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ABSTRACT Commensal microbial communities have immense effects on their ver-
tebrate hosts, contributing to a number of physiological functions, as well as host fit-
ness. In particular, host immunity is strongly linked to microbiota composition
through poorly understood bi-directional links. Gene expression may be a potential
mediator of these links between microbial communities and host function. However,
few studies have investigated connections between microbiota composition and
expression of host immune genes in complex systems. Here, we leverage a large
study of laboratory-raised fish from the species Gasterosteus aculeatus (three-spined
stickleback) to document correlations between gene expression and microbiome
composition. First, we examined correlations between microbiome alpha diversity
and gene expression. Our results demonstrate robust positive associations between
microbial alpha diversity and expression of host immune genes. Next, we examined
correlations between host gene expression and abundance of microbial taxa. We
identified 15 microbial families that were highly correlated with host gene expres-
sion. These families were all tightly correlated with host expression of immune genes
and processes, falling into one of three categories—those positively correlated, nega-
tively correlated, and neutrally related to immune processes. Furthermore, we high-
light several important immune processes that are commonly associated with the
abundance of these taxa, including both macrophage and B cell functions. Further
functional characterization of microbial taxa will help disentangle the mechanisms of
the correlations described here. In sum, our study supports prevailing hypotheses of
intimate links between host immunity and gut microbiome composition.

IMPORTANCE Here, we document associations between host gene expression and
gut microbiome composition in a nonmammalian vertebrate species. We highlight
associations between expression of immune genes and both microbiome diversity
and abundance of specific microbial taxa. These findings support other findings from
model systems which have suggested that gut microbiome composition and host
immunity are intimately linked. Furthermore, we demonstrate that these correlations
are truly systemic; the gene expression detailed here was collected from an impor-
tant fish immune organ (the head kidney) that is anatomically distant from the gut.
This emphasizes the systemic impact of connections between gut microbiota and
host immune function. Our work is a significant advancement in the understanding
of immune-microbiome links in nonmodel, natural systems.
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Diverse communities of commensal microbiota are associated with a range of verte-
brate organ systems, such as the respiratory tract (1), skin (2), and digestive tract

(3). Each of these distinct communities can contribute to host physiological function
and fitness (e.g., 4, 5) but can cause pathology when disrupted (e.g., 6). Conversely,
host function, including the host immune system, also has effects on the composition
of the microbiota, maintaining mutualists to avoid dysbiosis while also eliminating dis-
ease-causing pathogens (7, 8). Because host immune and physiological functions often
entail changes in gene expression, these reciprocal interactions between host function
and microbiome structure may be revealed by examining host gene expression (9, 10).
Preliminary studies suggest that changes in the microbiome can affect host gene
expression (9) and vice versa (11, 12). Still, much of what is known regarding cross talk
between host gene expression and microbiota composition has been learned using
reduced or single-taxa microbial models in a few host species (13–15). A potentially
valuable next step would be to examine transcriptome-wide associations with variation
in the entire gut microbial community. However, such studies are lacking because until
recently, transcriptomic analyses were too expensive to allow sufficient statistical
power (16).

Preliminary evidence suggests that host immunity, in particular, is closely linked to
microbiota composition, likely through complex feedback networks (8, 17). Vertebrates’
mutualist bacteria promote key immune tolerance and regulatory pathways in a variety
of organ systems (8). These include innate immunity in skin (18, 19), response to influenza
in the respiratory tract (20), and development of gut-associated lymphoid tissue (GALT)
and regulatory T cells in the intestines (5). Removal of, or changes in, these microbes
compromises host immunity (21) or can lead to auto-immune disorders (22, 23).
Furthermore, studies have shown the importance of commensal bacteria in regulat-
ing and educating adaptive immunity (24, 25), as well as contributing to develop-
ment and homeostasis of innate immune cells (26–28). Conversely, on the part of the
host, numerous immunological processes function in regulating microbiota compo-
sition, including physical barriers (i.e., host-secreted mucus layers; (29, 30), host-pro-
duced antimicrobial compounds (31), recognition molecules (i.e., pattern recognition
receptors [PRRs] [32] and associated signaling [33]) and effector responses (i.e., secre-
tion of antibodies [34]). Despite considerable preliminary knowledge regarding cross
talk between host immunity and microbiota composition, the mechanisms of this
feedback, particularly in regard to the roles of host gene expression, are not well
described.

Advances in transcriptomics (RNAseq), have allowed for improved understanding of
host function, including immunity and immune response, in diverse systems (35).
These advancements can allow for the expansion of work investigating bidirectional
interactions between microbiota and host immunity (here, “microbe-immune feed-
backs”) beyond existing laboratory model systems with simplified microbial composi-
tions (36–41). Despite these technical advances, RNAseq has yet to be broadly applied
to investigating microbe-immune feedbacks, particularly in complex contexts. A few
studies have indicated correlation between microbiome composition and expression
of immune genes (42, 43). One such study screened a diversity of microbial species for
their effects on host gene expression (whole transcriptome using Affymetrix arrays),
demonstrating complex immunomodulatory effects of symbiotic microbes (13).
However, these studies mostly document the effects of simplified microbiota or even
monocultures. Only one study has examined more complex interactions, demonstrat-
ing strong associations between gene expression and microbiome composition in co-
lonic epithelial cells, though these associations were limited to the localized colonic
environment (9). Indeed, most studies examining feedback between microbiome com-
position and host gene expression have focused on localized gene expression, particu-
larly in the gut epithelial tissue (44, 45). Consequently, we know little about the sys-
tem-wide effects of microbiota composition on expression in distant immune-relevant
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tissues, and vice versa. Finally, few of these studies have examined the effects of
genetic and environmental variation among hosts on these relationships.

Here, we report evidence for covariation between hosts’ gene expression and their
gut microbiota, from a large sample of laboratory-bred three-spined stickleback
(Gasterosteus aculeatus), a small fish native to northern temperate coastal marine and
freshwater habitats. Like many vertebrates, individual stickleback harbor hundreds of
microbial taxa (operational taxonomic units [OTUs]) in their intestines (46–49). The
composition of this microbiota differs dramatically between cooccurring individuals
within a given natural population and between populations (between neighboring
lakes, adjacent lakes and streams, or marine versus freshwater [(46–48, 50–52]). For
example, in one survey of a single natural population of stickleback, proteobacteria
ranged from less than 5% to over 95% of the microbial community, depending on the
individual host. This dramatic among-individual variation is associated with variation in
diet, sex, genotype (at major histocompatibility complex [MHC] and other autosomal
loci), helminth infection status, and interactions between these factors (46–49). Similar
among-individual variation is observed within laboratory stocks of stickleback, whose
microbiota is partly but not fully overlapping with the taxa seen in wild populations
(48).

Here, we seek to test whether this among-individual variation in gut microbiota
composition in the laboratory is associated with individuals’ immune gene expression.
Using transcriptomic data generated from head kidneys (primary immune organ), we
document correlations between immune gene expression and both microbiome diver-
sity and proportion of key microbial families. Our results are some of the first to
describe links between broad host immune functioning and microbiome structure in a
nonmammalian vertebrate.

RESULTS
Correlations between gene expression and microbiome diversity. Correlative

analyses revealed strong associations between microbiota diversity and host gene
expression, including expression of putative immune genes. Alpha diversity of the gut-
associated microbiota was significantly correlated with 1,929 transcripts involved in a
range of functions (Data set S1; ;7.5% of all transcripts). These correlations were ro-
bust to experimental covariates; path analysis revealed that 1,014 (52.5%) of these cor-
relations remained significant when accounting for sex, infection, mass, etc. We will
henceforth discuss all 1,929 of the identified correlated transcripts. Of this total, 834
transcripts were positively correlated with microbial diversity and 1,095 were nega-
tively correlated with diversity. Many of the correlated transcripts were involved in dif-
ferent arms of immunity (T1 Table 1). Genes significantly correlated with microbiome di-
versity were significantly enriched for 11 biological process gene ontology (GO) terms,
10 positively (i.e., overrepresented processes which are increasing as a result of
increased diversity of the microbiota based on tau values) and 1 negatively (i.e., overre-
presented processes whose expression is lower in fish with high microbial diversity;

F1 Fig. 1). This included two terms involved in immunity that were positively correlated with
diversity: “positive regulation of interleukin-12 production” and “common myeloid pro-
genitor cell proliferation.” Genes that significantly contributed to enrichment of these two
terms included receptor-type tyrosine-protein kinase FLT3 (ENSGACT00000004059), Toll-

TABLE 1 Examples of immune genes that were significantly correlated with diversity of gut-associated microbiotaa

Gene Ensembl ID Immune function tau value P value
C-C motif chemokine 4 ENSGACT00000000554 Chemoattractant (NK cells, monocytes, etc.) 0.197 4.76e-07
Interferon regulatory factor 4 ENSGACT00000021099 Transcriptional activator (antiviral) 0.152 9.96e-05
Complement C3 ENSGACT00000026259 Complement cascade (innate immunity) 0.133 7.65e-04
Eosinophil peroxidase ENSGACT00000022724 Antibacterial activity –0.175 7.68e-06
Interleukin-11 ENSGACT00000013923 Hematopoietic stem cell proliferation –0.152 0.00134
NLR family CARD domain-containing protein 3 ENSGACT00000001559 Negatively regulates innate immunity –0.143 0.00272
aA full list of significantly correlated genes can be found in Data set S2.
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like receptor 9 (ENSGACT00000013443), tumor necrosis factor receptor superfamily mem-
ber 5 (ENSGACT00000014780), interferon regulatory factor 8 (ENSGACT00000021099),
and peregrin (ENSGACT00000001616). In contrast, the immune-related term “regulation
of macrophage inflammatory protein 1 alpha production” and associated genes were
expressed at lower levels in fish with more diverse gut microbiota. Significant genes
included in this term were pyrin (ENSGACT00000027215), high mobility group protein B1
(ENSGACT00000027215), and transient receptor potential cation channel subfamily V
member 4 (ENSGACT00000012089). In sum, microbial diversity was positively correlated
with expression of genes associated with development of immune cells and regulation of
interleukin-12 (IL-12) but negatively correlated with expression of genes associated with
inflammatory processes.

Coexpression analyses revealed strong associations between microbiota diversity
and host gene expression, and immune genes in particular. The resulting network
comprised 10 modules plus a “gray” module, module 11, containing transcripts that
did not fit into any existing modules. These modules ranged in size from 44 to 18,227
transcripts. The largest of these modules (module 10) likely represents groups of
housekeeping genes with low variable expression. Two modules were significantly
positively correlated with microbial diversity, module 2 (r=0.11, P=0.03) and module
7 (r=0.12, P=0.02; Fig. S2). Module 2 (1,344 transcripts) was significantly enriched for
76 biological process gene ontology terms involved in a wide diversity of processes,
indicating its roles in basic cellular homeostasis. Some of the largest groups of these
terms included those involved in translational initiation, cytosolic transport, cellular
component biogenesis, and electron transport chain (Fig. S3). The biological meaning
of this module is ambiguous. In contrast, the much smaller module 7 (48 transcripts)
was enriched for 36 biological process gene ontology terms, 20 of which were related
to immunity and defense (F2 Fig. 2). Thus, we concluded that module 7 consists of core-
gulated genes predominately involved in immune function. Enriched terms included
those involved in interferon production (“positive regulation of type-I interferon pro-
duction,” “positive regulation of interferon alpha production,” interferon gamma-medi-
ated signaling pathway,” etc.) and cytokine signaling (“cytokine-mediated signaling
pathway,” “regulation of cytokine production,” etc.), as well as other general immune
GO terms (“immune response,” “immune effector process,” “innate immune response,”
etc.). Thus, fish with more diverse microbiota generally exhibited higher coexpression
of these categories of immune genes. Consequently, coexpression analyses indicate
strong positive association between host gene expression and a diverse network of
genes involved in immunity, with emphasis on interferon and cytokine signaling.

Correlations between gene expression and relative abundance of specific taxa.
Initial analysis of correlations between microbial families and host gene expression
identified 507,317 significant associations out of 7,893,582 possible pairwise correla-
tions between the relative abundance of a given family and a specific gene (;6.4% of
total correlations run, slightly but very significantly more than the 5% expected from
type II error alone). We took a conservative approach and further examined only

FIG 1 Hierarchical clustering of significantly enriched biological process gene ontology terms associated with
genes significantly correlated with microbial diversity. Terms in red are positively enriched, and terms in blue
are negatively enriched. Font style indicates level of significance.
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correlations between approximately the top 5% (approximate) most correlated micro-
bial families (15) and genes (1,297). Combined, these families were correlated with a
total of 1,263 of the 1,297 top correlated genes (F3 Fig. 3; Data set S2). Again, most of
these filtered relationships were robust to covariates (T2 Table 2); thus, here we will dis-
cuss all significant results from the initial analysis.

Gene ontology enrichment of genes correlated with each family revealed significant
patterns of enrichment of immune processes. The 15 families fell into one of three cat-
egories based on gene ontology enrichment analyses—positively immune associated,
neutrally immune associated, or negatively immune associated (Fig. 3; Data set S3).
Families such as Rubrobacteraceae, Orbaceae, and Halomonadaceae showed significant
negative associations with immunity. Genes correlated with Rubrobacteraceae and
Halomonadaceae abundance were significantly negatively enriched for immune-associ-
ated biological process GO terms such as “lymphocyte aggregation,” “response to
interleukin-15”, and “myeloid lymphocyte migration.” Similarly, Orbaceae abundance
was significantly correlated with genes negatively enriched for immune terms, includ-
ing “pro-B cell differentiation,” “positive regulation of interferon alpha secretion,” and
“hummoral immune response.” In contrast, abundance of six microbial taxa, including
Caulobacteraceae and Chlamydiales, was positively associated with immune processes.
Genes correlated with these taxa were positively enriched for immune-associated bio-
logical process GO terms such as “positive regulation of B cell differentiation,” “positive
regulation of macrophage activation,” “positive regulation of interleukin-12 produc-
tion,” and “myeloid progenitor cell differentiation.” Six microbial families had mixed
(i.e., neutral) associations with biological processes (F4 Fig. 4). Based on enrichment analy-
sis of the correlative results, abundance of microbial taxa can have complex effects on
host gene expression, dependent on the taxon identity.

FIG 2 Hierarchical clustering of significantly enriched biological process gene ontology terms associated with
genes in module 7 (positively associated with microbial diversity). Font style indicates level of significance.
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Nine of ten WCGNA coexpression modules were correlated with one or more of the
15 identified microbial families of interest (Fig. S2). Module 7, the immune functioning
module significantly correlated with diversity, was only correlated with abundance of
Spartobacteria. Of the nine modules that were correlated with one or more family of in-

FIG 3 Heat map of correlations between families and genes of interest. Values shown are Kendall’s
tau for each correlation. Gray fill indicates nonsignificant correlations. Rows and columns are
hierarchically clustered using default parameters.

TABLE 2 Summary of statistically significant correlations between the top 5%most
correlated families and genes and the number of correlations which remain significant
following covariate analyses using structural equation modeling (SEM analysis)

Microbial taxa

No. of significantly correlated genes

Correlation analysis SEM analysis
Betaproteobacteria (unclassified) 639 459
Caulobacteraceae 591 484
Chitinophagaceae 389 182
Chlamydiales (unclassified) 376 210
Clostridiaceae 1 926 662
Geodermatophilaceae 661 427
Gp10 (unclassified) 505 217
Halomonadaceae 393 324
Incertae Sedis XI 480 316
Methylobacteriaceae 523 410
Nocardiaceae 893 658
Orbaceae 306 174
Peptostreptococcaceae 908 594
Rubrobacteraceae 351 187
Spartobacteria (unclassified) 488 432
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terest, most had broad biological functions. Exceptions to this included module 1,
which was enriched primarily for biological processes involved in tetrapyrrole metabo-
lism and inorganic anion transport. Module 1 was significantly positively correlated
with Betaproteobacteria (r=0.17, P = 0.0009) and significantly negatively correlated
with Chitinophagaceae (r=0.11, P = 0.03) and Peptostreptococcaceae (r=–0.12, P = 0.01).
Additionally, module 9, which was enriched for numerous terms involved in wound
healing, defense, and immune response, was positively correlated with both
Chitinophagaceae (r=0.11, P = 0.04) and Orbaceae (r=0.11, P = 0.03) Coexpression anal-
yses suggest that microbial families are related to broad networks of host gene expres-
sion in complex, family-dependent patterns.

DISCUSSION
Microbiome diversity is positively associated with host immunity. Numerous

studies, mostly of laboratory mice, indicate that vertebrates’ microbiome composition
is both a function of their immune genotype and phenotype (11, 53–55) and, in turn,
can modify host immune development and response (55–57). Despite this, the mecha-
nisms of these relationships, as well as patterns of microbe-immune feedback in more
complex and diverse systems, are not known. Here, we provide some of the first evi-
dence of the roles of host gene expression in mediating microbe-immune feedback in
a nonmammalian system. Based on existing evidence, we expect correlations between
gut microbiota composition and host immunity, as measured by gene expression in
immunological tissues. This should be true even when examining tissues that are ana-
tomically separated from the organ(s) containing the microbiota, because localized
interactions in the gut may alter system-wide immune traits. Consistent with this ex-
pectation, we find that alpha diversity of G. aculeatus gut microbiota was significantly
correlated with expression of a large number of host genes expressed in the head kid-
ney, many of which had functions in immunity. Coexpression analysis further con-
firmed strong associations between a broad diversity of immune components and

FIG 4 Significance and enrichment of immune-associated biological process terms associated with each of the 15 microbial families of interest. (A to C)
Families are classified into the following three groups: (A) families negatively associated with immunity, (B) families neutrally associated with immunity, and
(C) families positively associated with immunities. Each bar indicates a significantly enriched biological GO term; color indicates the association of the term
with immunity (red indicates terms which positively contribute to immune functions, blue indicates negative terms, and gray indicates neutral); the
direction of bar indicates positive or negative enrichment; the magnitude of bars indicates the negative log of the adjusted P value.
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microbial diversity. Our results collectively confirm that, broadly speaking, host immu-
nity (measured by transcriptomics) and microbiome diversity are positively associated.
This finding is agreement with, and expands upon, past studies of G. aculeatus, which
found that fish from some populations reared with conventional microbiota commun-
ities had higher neutrophil activity in their guts than germfree fish (51). However, our
results are unique in highlighting the far-reaching effects of gut microbiome on host
immune gene expression; gut microbiome composition was correlated with gene
expression broadly, and expression of immune genes especially, in the anatomically
distant head kidney (located cranially near the gills). Correlations between gut micro-
biota and gene expression in head kidney tissue indicate significant cross talk between
immune cell development and microbiota composition, as the head kidney is primarily
involved in the development of a range of immune cells (58). Consequently, our find-
ings suggest complex effects of gut microbiome on the development of host immune
cells and, consequently, host immune function.

Gene ontology analysis of significantly correlated genes emphasized the relation-
ship between microbiome diversity and expression of specific immune genes in G. acu-
leatus. “Positive regulation of interleukin-12 production” was positively associated with
microbiome diversity. This is in accordance with past studies demonstrating effects of
pro- and prebiotic compounds on interleukin-12 production (59–61). Furthermore,
“common myeloid cell progenitor differentiation” was positively associated with micro-
bial diversity. Past studies have demonstrated strong effects of the microbiota on mye-
loid cell development. Commensal bacteria increase the amount and division of mye-
loid progenitor cells (62); increased myelopoiesis (62) and bone marrow myeloid cell
abundance (27) are positively associated with microbiome complexity. Our transcrip-
tomic results indicate similar relationships between gut microbiota and development
of immune cells in a major teleost hematopoetic organ, the head kidney. Finally, “regu-
lation of macrophage inflammatory protein 1-a (MIP1-a)” was negatively associated
with microbiome diversity. MIP1-a is an inflammatory chemokine (63). Inflammation is
well known to be linked with dysbiosis of the microbiome (7); reduced microbial diver-
sity is associated with many inflammatory conditions of the gut (7, 64). In sum, our
analyses revealed significant connections between microbiome diversity and host im-
munity as measured by transcriptomics, though the mechanism and direction of causa-
tion of these relationships requires further study.

Microbial taxa have opposing effects on host immune gene expression. In addi-
tion to highlighting significant microbe-immune feedback associated with diversity of
the gut microbiota, our study also provides substantial initial evidence of the effects of
specific microbial taxa on host gene expression and immunity. Abundance of specific
microbial taxa was correlated with a wide array of host genes, with functions in a diver-
sity of biological processes. Indeed, coexpression analysis demonstrated strong associ-
ations between abundance of particular microbial families and modules involved in
broad host functioning. The exact nature of these associations varied among microbial
families, with certain groups of microbial families displaying opposing trends of corre-
lations to both individual genes, and coexpression modules. Specific microbial taxa are
known to effect broad host functioning (5, 65–67). Our results are among the first to
highlight the complex nature of specific host-microbe interactions, the importance of
host gene expression in mediating these interactions, and the effects of these relation-
ships on a diversity of functions. Here, we will specifically focus on variation in associa-
tion between microbial taxa and expression of genes involved in host immunity.

Gene ontology analysis of associations between families and genes of interest
revealed clear patterns of associations between microbial family abundance and host
immune gene expression. Microbial taxa fell into three groups—those positively corre-
lated, negatively correlated, or neutrally associated with immune gene expression. It is
known that certain groups of commensal bacteria, such as segmented filamentous
bacteria (68), are positively associated with aspects of host immunity, while others,
including Bacteroides fragilis (69), induce protective tolerogenic responses, suppressing
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immunity (13). Furthermore, pathogenic bacteria may suppress (70, 71) or induce (72,
73) host immunity during infection. These relationships are often highly context de-
pendent, and the mechanisms of these relationships are poorly understood. Here, we
break down observed relationships between specific microbial family abundance and
host immunity, highlighting the need for increased functional understanding of these
taxa in order to improve mechanistic knowledge of the microbiome and its effect on
host function.

Abundance of six microbial taxa was significantly positively associated with expression
of immune genes in our study. These families were Caulobacteraceae, Chitinophagaceae,
Chlamydiales, Clostridiaceae, Nocardiaceae, and Peptostreptococcaceae. Half of these fami-
lies (Caulobacteraceae, Chlamydiales, and Nocardiaceae) are well described for their associ-
ation with disease and other pathologies (74–76). Specifically, the family Nocardiaceae is
known to contain some opportunistic pathogens (77), including microbes that induce
nocardosis in fish (78). Positive associations between these taxa and expression of host
immune genes may be indicative of the pathogenic nature of these microbes, which
would induce host immune responses.

The remaining three families that were positively associated with host immunity,
Chitinophagaceae, Clostridiaceae, and Peptostreptococcaceae, have diverse roles in mi-
crobial communities. Members of the family Chitinophagaceae are often described as
components of the commensal microbiota of aquatic species, including lampreys (79),
and aquatic amphibians (80), though its function is poorly understood. Studies have
highlighted beneficial functions of these microbes in degrading chitin (81), which may
explain their ability to inhibit growth of the common fungal amphibian pathogen
Batrachochytrium dendrobatidis (80). Members of the family Clostridiaceae, specifically,
segmented filamentous bacteria (SFB), have well-documented effects on mammalian
immunity. SFB are capable of enhancing Th17 cell responses (68) and promoting
increased IgA production in mice (82). Finally, Peptostreptococcaceae is a poorly
described yet diverse microbial taxon which is often associated with the vertebrate gut
microbiome. Much of what is known regarding this family is based upon extensive
research regarding a single representative species, Clostridium difficile (83). However,
this family is immensely diverse (84), necessitating further functional study to under-
stand broader associations of members of this taxon with host immunity. Indeed, fur-
ther functional classification and controlled mechanistic studies will prove fruitful in
understanding positive associations between the taxa identified here and host
immune functioning.

In contrast to those taxa identified as positively associated with host immune
gene expression, three families could be classified as negatively associated with host
immunity—Halomonadaceae, Orbaceae, and Rubrobacteraceae. All three of these micro-
bial families are poorly described, and two (Halomonadaceae and Rubrobacteraceae)
have been primarily described as environmental microbes. Members of the family
Halomonadaceae are well described as halophiles (85). Although some preliminary stud-
ies indicate a potential pathogenic role of members of this group (86–88), the roles of
this family in microbiome composition are not well understood. Both Rubrobacteraceae
and Orbaceae have been documented as members of insect gut microbiomes, found in
termites (89), and bees (90), respectively. Orbaceae in particular has been described to
have negative impacts on bee colony productivity (91, 92). Our study is the first, to our
knowledge, to report the presence of these microbes in the vertebrate gut microbiome.
Further functional characterization of these three taxa is necessary to interpret their asso-
ciations with host immunity in the G. aculeatus system.

Finally, it is worth noting common trends in correlations between expression of
genes involved in specific immune components and microbial family abundance.
Genes associated with several immune components were correlated with at least a
third of the significant microbial families, as revealed by gene ontology analysis. Many
of these components have also been linked to microbiome function or composition.
Genes involved in myeloid progenitor cell differentiation, regulation of interleukin-12
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secretion/production, interferon gamma production, pro-B cell differentiation, and
positive regulation of macrophage activation were commonly correlated with micro-
bial family abundance. We have previously discussed the importance of both IL-12 and
myeloid progenitor cells in the maintenance of gut-microbiome composition. The pro-
duction of interferon gamma (IFN-g) has been both positively and negatively linked to
various microbial components; IFN-g production decreased in piglets treated with a
probiotic bacterium (93) and immunomodulary compounds from other bacteria (94).
In contrast, IFN-g1 CD8 T cells are induced by commensal bacteria in human guts (95).

We observed frequent correlation between microbial family abundance and expres-
sion of immune genes associated with B cell processes and macrophage activity.
Microbiota are known to have profound effects on B cell processes, including diversifica-
tion, production of IgA, and differentiation of regulatory B cells (24, 96). Furthermore, on
the part of the host, B cell production of IgA in particular is essential for maintenance
of gut microbiome composition by restricting commensal growth and maintaining a
diverse composition (97). Similarly, in some teleost fish such as rainbow trout, IgT is
known to play important roles in microbiome homeostasis (98). Similar bi-directional
relationships are known to exist between macrophages and gut microbiota.
Microbial metabolites such as butyrate can modulate and reduce macrophage activ-
ity to promote tolerance of commensal bacteria (56). Macrophages can also shape
gut microbiota structure, potentially by discriminating between commensal and
pathogenic microbes (99). In sum, the most striking patterns of correlation between
immune gene expression and microbial family abundance add to the existing litera-
ture supporting the roles of these specific arms of immunity, and specific cell types,
in microbiome maintenance.

Conclusions. Here, we document one of the first investigations of correlations
between natural gut microbiome composition and host transcriptomic gene expres-
sion in a nonmammalian vertebrate. Our results detail extensive correlation between
the host’s transcriptome and both diversity and proportion of specific microbial fami-
lies. Notably, these associations exist despite spatial separation between the micro-
biota and the organ where we measure expression, highlighting the systemic changes
induced by gut microbiota. Both diversity and microbial family proportion are strongly
correlated with expression of a diversity of host immune genes. Associations between
immunity and microbial diversity likely reflect both the effects of a healthy, diverse
microbiome on the host immune system and the need for a robust immune system to
maintain this diversity. Trends in correlation between abundance of specific microbial
families and host immune gene expression identified groups both positively and nega-
tively associated with host immunity. Many of these trends support previous studies
from other systems. However, increased functional understanding of microbial taxa is
needed to interpret these trends. In sum, our results highlight the immense intercon-
nectivity between host gene expression and gut microbiome composition, specifically
in regard to immune function. These results also highlight the utility of the transcrip-
tomic tools in enabling studies of microbe-immune feedbacks in wild populations and
nonmodel animals.

Data availability. Raw data and code for all analyses described in the manuscript
can be found on GitHub (https://github.com/lfuess/MicrobiomeMS).

MATERIALS ANDMETHODS
Experimental design. Full details of data collection can be found in Ling et al. (49) and Fuess et al.

(100). Briefly, we collected reproductively mature fish from two lakes on Vancouver Island, British
Columbia, Canada (Roberts and Gosling Lakes). Eggs were removed from gravid females and fertilized
using sperm from testes collected from males from the same lake (pure F1s) or from the other lake (F1
hybrids). Eggs were shipped back to the University of Texas at Austin, hatched, and reared to reproduc-
tive maturity. The resulting adults were again artificially crossed to generate F2 hybrids consisting of
intercrosses (F1!F1 hybrids) or backcrosses (ROB!F1 or GOS!F1). The resulting generation was reared
for 1 year and then experimentally exposed to Schistocephalus solidus cestodes, following standard pro-
cedures (101, 102). Then, 42 days postexposure, fish were euthanized and data were collected for a num-
ber of phenotypic metrics, including sex, mass, and infection status/load. We also dissected head kid-
neys for immune transcriptomic analysis. In fish, the head kidney, or pronephros, is a primary immune

9/4/21 10:36 ArtID: DOI:10.1128/mBio.00145-21 CE: KGL-rms

ID: chindarkaraTime: 10:36I Path: S:/SM-MBIO210220

Fuess et al. ®

March/April 2021 Volume 12 Issue 2 e00145-21 mbio.asm.org 10



organ functioning primarily as a lympho-myeloid compartment (58). As is indicated by the name, this
structure is located in the cranial region of the fish, near the gills, separating it considerably from the
gut. Guts were dissected using sterile protocols for microbiome composition analysis (49).

Transcriptomic analysis. RNA was extracted from one head kidney, and sequencing libraries were
generated following methods described in Fuess et al. (100). We extracted RNA from this organ using
the Ambion MagMAX-96 total RNA isolation kit following a modified version of the manufacturer’s pro-
tocol. A DNA removal step was preformed using TURBO DNase. RNA yield was quantified using a Tecan
NanoQuant Plate. TagSeq RNA sequencing libraries were constructed using a modified version of meth-
ods described in Lohman et al. (103), detailed in Fuess et al. (100). Libraries were sequenced on a HiSeq
2500 instrument at the Genomics Sequencing and Analysis Facility of the University of Texas at Austin,
Texas.

Resulting sequencing reads were processed using the iRNAseq pipeline (104). Reads were aligned to
version 95 of the stickleback genome on Ensembl using Bowtie 2 software (105), and any samples with
less than 500,000 aligned reads were discarded (final n= 393). A matrix of normalized read counts was
generated using the R package DESeq2 (106). This normalized read count matrix was used for all subse-
quent analyses (correlations, path analyses, and WGCNA). Information about the resulting read counts
per individual, annotation, and other metrics of transcriptome information are reported in Fuess et al.
(100).

Gut microbiota analyses. Full details regarding sampling and analysis of gut microbiota composi-
tion can be found in Ling et al. (49). To summarize, DNA was extracted from the entirety of collected
stickleback intestines (n= 693 fish) using MoBio Powersoil DNA isolation kits. From these data, 16S rRNA
amplicons were generated for the V4 hypervariable regions. Sequencing was performed on an Illumina
Miseq platform at the Genomic Sequencing and Analysis Facility at the University of Texas at Austin,
Texas. The resulting reads were processed using standard procedures in the mothur software package
(v.1.39.1) (107). OTUs were identified using the UCLUST algorithm based on 97% similarity. The relative
proportion of microbial taxa (calculated at the level of family) was calculated as the proportion of total
OTU reads from a sample representing a given family compared to the total number of OTUs for a sam-
ple. Data were rarefied to 2,000 sequences, and Chao1 alpha diversity was calculated using the R pack-
age phyloseq (108). Information about the resulting number of microbial OTUs, counts, and read depth
per individual are reported in greater detail in Ling et al. (49), who examined the microbiota’s response
to cestode infection and host genotype.

Correlative analyses. We tested for correlations between microbiome composition and host gene
expression. All statistics were conducted in R (v.3.6.1). First, we correlated the gene expression of all
expressed genes to alpha diversity using a Kendall’s rank correlation. Genes with P values less than 0.05
were considered significant for further analyses. Next, to identify families of microbes that are highly
associated with gene expression, we correlated the gene expression of all expressed genes to the rela-
tive proportion of each microbial family, again using a Kendall’s rank correlation. This resulted in thou-
sands of significant associations between families and genes, many of which may be false positives due
to the exceptionally large number of tests run (considering the combinations of many transcripts against
many microbes). We concluded that the most conservative approach would be to select the top 5% (ap-
proximate; ties accounted for) most significantly correlated families (n = 15)AQ: A and genes (n = 1,290) and
consider only relationships between these two groups for further analyses.

To assess the effects of covarying factors (i.e., successful cestode infection, sex, host genotype
[cross]) and ensure that correlations were not the result of spurious covariate effects, we also conducted
a path analysis using the R package sem (109). Potential covariates which may have confounded rela-
tionships detected by the correlative analyses were included in the model—sex, infection, mass (log-
transformed), and cross-direction. The full model structure can be found in the supplemental material
(Fig. S1).

Gene ontology analyses. To determine the biological processes most correlated with microbiome
diversity and composition, we conducted gene ontology analyses. We assessed enrichment of biological
process GO terms, using the R script GO-MWU (110). To identify biological processes enriched as a result
of variation in microbiome diversity, we conducted gene ontology enrichment analyses using the tau
values for all significantly correlated transcripts; all other genes were assigned a value of 0. We used a
similar approach for assessing biological process terms enriched in relation to relative family proportion
for each of our families of interest. Gene ontology analyses were conducted using GO terms associated
with stickleback gene annotations (see reference 53) and performed independently for each family.
Input for this analysis was a matrix comprised of tau values for all significant correlations between a
given family and the top 5% of genes (all other genes assigned a value of 0).

Coexpression analyses. We used coexpression analyses to identify groups of coexpressed host
genes that were significantly correlated with microbiome diversity or relative proportion of microbial
families (using only the 15 most significantly correlated families identified previously). Coexpression
analyses were run using the R package WGCNA (111). We constructed a signed network using bicor anal-
yses and the following parameters: soft power = 12; minimum module size = 30; deepSplit = 2; dissimilar-
ity threshold = 0.2. The resulting network was correlated with microbiome diversity and relative family
proportion using a bicor correlation. Modules with significant correlations (P, 0.05) were analyzed for
enrichment of biological processes using gene ontology enrichment (GO-MWU; default parameters for
analysis of WGCNA modules).
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SUPPLEMENTAL MATERIAL LEGENDS

[Author: Because the full supplemental material legends will appear in the HTML
version of the article online, and because the copy editor may have made changes, we
have reproduced the legends below. Feel free to enter your changes on this page and
we will see that they are conveyed to the online article.]

FIG S1 Schematic of the structural equation model that was used to assess
robustness of covariance between gene expression and microbial diversity or taxon
abundance.

FIG S2 Tombstone plot displaying correlations between coexpression network
modules and alpha diversity or microbial family diversity (for families of interest).
Only significant values are displayed.

FIG S3 Hierarchical clustering of significantly enriched biological process gene
ontology terms associated with genes in module 2 (positively associated with
microbial diversity). Font style indicates level of significance.

DATA SET S1 List of transcripts which were significantly correlated with alpha
diversity of the gut microbiome. Transcript ID, annotation data, P value, and tau
values are listed.

DATA SET S2 List of transcripts which were significantly correlated with each of
the top 15 most correlated microbial families. Transcript ID, annotation data, P
value, and tau values are listed.

DATA SET S3 Full gene ontology enrichment results for correlations between
transcripts and each of the top 15 most correlated microbial families.
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